An introduction to simplicial sets

ثبت نشده
چکیده

This is an elementary introduction to simplicial sets, which are generalizations of ∆-complexes from algebraic topology. The theory of simplicial sets provides a way to express homotopy and homology without requiring topology. This paper is meant to be accessible to anyone who has had experience with algebraic topology and has at least basic knowledge of category theory. An important part of simplicial homology is the idea of using ∆-complexes instead of simplicial complexes (see [6, Ch. 2]). They allow one to deal with the combinatorial data associated with a simplicial complex (which is important for homology) instead of the actual topological structure (which is not). Another simplex-based homology theory is singular homology, whose singular maps (see [6, Ch. 2]) represent simplices in a given topological space. While singular maps have properties analogous to simplices, such as a sensible definition for the faces of a singular map, singular maps are not in general injective, which means the data for gluing the faces of a singular map together might not be able to be described as a ∆-complex. The theory of simplicial sets generalizes the idea of ∆-complexes to encompass other objects with simplex structure, such as singular maps. The theory provides a realization functor |−| from simplicial sets to topological spaces which preserves homotopy. This functor is left adjoint to the functor S which takes topological spaces and gives a simplicial set consisting of the singular maps. Perhaps the most difficult part for a newcomer to the subject of simplicial sets is getting used to the category theory involved. Because of this, this paper limits discussion to simplicial sets and algebraic topology. The author found [1] very useful when trying to understand the idea of simplicial sets and [4] illuminating for the derivation of the relations (8), (9), and (10). Much of the material comes from [3], but it was corroborated with [2] to determine what is modern notation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

An elementary illustrated introduction to simplicial sets

This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familiar with just the fundamentals of algebraic topology.

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

A Leisurely Introduction to Simplicial Sets

Simplicial sets are introduced in a way that should be pleasing to the formally-inclined. Care is taken to provide both the geometric intuition and the categorical details, laying a solid foundation for the reader to move on to more advanced topological or higher categorical applications. The highlight, and the only possibly non-standard content, is a unified presentation of every adjunction wh...

متن کامل

A model of type theory in simplicial sets: A brief introduction to Voevodsky's homotopy type theory

As observed in [HS] identity types in intensional type theory endow every type with the structure of a weak higher dimensional groupoid. The simplest and oldest notion of weak higher dimensional groupoid is given by Kan complexes within the topos sSet of simplicial sets. This was observed around 2006 independently by V. Voevodsky and the author. The aim of this note is to describe in an accessi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011